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Defects in wetting fronts: Experimental and theoretical results
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We study flow in a porous medium in the presence of a discontinuous perturbaéf@c) that perturbs its
parameters. The discontinuous perturbation is at the interface between regions of different porosities, produced
in the experiment by uniformly depositing black toner with a laser printer. When water propagates in such a
medium the wetting front develops a nontrivial, curved steady state solution. We present experimental mea-
surements of the profiles and their propagation rate, as well as the characteristics of the steady state solution.
A naive attempt to use perturbation theory fails due to discontinuities at the “defect.” We proceed to develop
a theoretical treatment based on Laplacian flow, that is good to all orders and predicts most of the features that
can be observed. We find good quantitative agreement between theory and experiment, without any fit param-
eters.[S1063-651X98)14706-2

PACS numbgs): 47.55.Mh, 47.15.Hg, 68.45.Gd

[. INTRODUCTION logarithmic in the spatial dimensidn. The correlations can
be enhanced by going to anisotropic paper with an average
The role of “defects” in nonequilibrium systems is an directional order in the fiber orientation. We have measured
intriguing question that has recently received much attentionin that case power law correlatio@ L)~ L% Thus a front
Defects are a spatial manifestation of singularities in the orwithout defects is simple, stable, has very little or no corre-
der parameter, and as such they teach us both about the ordated structure in it, and may be completely understood ana-
parameter and about the medium itself.dquilibrium sys- lytically [11]. Although the theory is fully consistent with the
tems the role of imperfections and impurities, grain bound-experimental results, an undetectakliegarithmig scaling,
aries and point dislocations in determining material properdoes not allow a guantitative verification. One solution is to
ties such as rigidity, strength, flexibility, and elasticity is well perturb the system and produce a pronounced response, with-
known[1]. However, innonequilibriumsystems the situation out leaving the scope of the model. This is what the defects
is more complexX2]. Nonlinear dynamical systems exhibit do. This approach can serve as a test to any theory that
more complicated “defect” solutions such as kinks andwould claim to deal with strong disorder in porous media.
propagating front$3], as well as more recent observations We are considering here the case of complete wetting.
on spirals or targets in systems such as conve¢dgor the  Defects in the case of partial wetting were considered previ-
Belusov-Zhabotinsky reactidi®]. These have been shown to ously by[12]. In that case the equilibrium energy consider-
play an important role in the transition of spatially orderedations and balance of forces dictate a completely different
systems with wave dynamics to spatial decoherence and tuconfiguration and steady state profile than the one we ob-
bulence[6]. serve. Defects have also been considered in the context of
The tools for treating discontinuous perturbations are alséront propagation for the restricted solid on sol@SOS
less developed in the nonequilibrium case. Since defects derodel and the equivalent Kardar-Parisi-ZhaidP2) equa-
marcate the border between phases of the system, the homtn [13]. No experimental verification of any of these pre-
topy structure of phase space at equilibrium has been used tlictions has been reported.
classify the transitions between the phasg@sThis has been In this paper we treat the conceptually simple problem of
less effective in nonequilibrium systems, where the topologia wetting front propagating in a porous medium with two
cal properties are not always of relevance. different permeabilities. The boundary between them is a
What is clearly lacking is a nonequilibrium system that is discontinuous perturbation. In Sec. Il we develop the theo-
rich enough to exhibit interesting “defect” structure and a retical approach that accounts for the influence of the discon-
long range influence of the discontinuous perturbation, whilginuous perturbation on the front. We first present the equa-
being simple enough to handle analytically. We present hergons of motion, then show that steady state solutions exist
such an example, a wetting front in which a spatial inhomo-only for a change iporositybut not incapillarity. We show
geneity is controllably inserted by changing the local permewhy a naive perturbative approach does not work, and then
ability in a precise fashion. The advancing front is perturbedoroceed to present a more complete theory for the two di-
by a change in permeability, and creates an angle differenamensional flow field, based on assumptions of side flinat
at the border between areas with different permeability coefwe verified experimentallyin a region adjacent to the front.
ficients. In Sec. Ill we describe the experimental and conceptual
We have previously shown that an undisturbed frontsetup—including a simple technique of depositing printing
known to be hydrodynamically stabJ8—10] exhibits very  toner with a laser printer as a controlled method for produc-
weak roughnes$11]. If the paper is isotropic then the ing defects in the medium. We find that the theoretical as-
height-height correlation functio€(L) is predicted to be sumptions agree with the experimental conditions. In Sec. IV

1063-651X/98/581)/68911)/$15.00 PRE 58 689 © 1998 The American Physical Society



690 O. ZIK, T. KUSTANOVICH, E. MOSES, AND Z. OLAMI PRE 58

we compare the predictions of the theory regarding the “de-
fect” structure with the experimentally measured profile in a

guantitative fashion, yielding very satisfactory agreement.
Section V includes some conclusions, perspectives, and

thoughts for the future. 8h,
Il. THEORETICAL ANALYSIS OF THE PROBLEM 8}2

The motion of fronts in a porous medium was extensively
studied in the context of two immiscible fluifi8]. The basic
physics of these phenomena is that of two dimensional flow
of water in the wet domain of porous media bounded by the
moving front and the walls. The driving mechanism of the
moving front is the capillarity, which creates a pressure jump
Py at the air-water boundary. The propagation rate in a me- 0 LO-B)2 L(1+B)2 L
dium that is characterized by a spatially fluctuating local X
permeability«(r), obeys Darcy’s law:

FIG. 1. A representation of the form of a steady state solution,
- s as the front propagates from the wet to the dry region, in the com-
v=—x(r)VP(r,t), (2.9) bined regions ofx; and x,. The arrows schematically mark the
. flow lines. 6h, , represent the relative width of the first and second
whereP(r,t) is the site dependent pressure. The equations agkgions. The angleg, , are the angles near the defect.
continuity for the velocity give the following equations for

the pressure: Pi,k1, 0<x<L(1-p8)/2
e R P(x),k(X)=1 P2,k2, L(1=pB)2<x<L(1+p)/2
V[x(r)VP(r,t)]=0. 2.2 Pi,ky, L(L+pB)2<x<L,

(2.6)
If the parametek is uniform then the equation of motion for ] ) )
the pressure will simply be the Laplace equation. where B is the fraction of the system size that has the per-
The boundary conditions for a flow that is driven by con- meability «,, and the indices 1, 2 stand for the two domains.
stant capillary forces are as follow&) A capillary pressure  The velocity under the same potential gradient will be dif-
—Py(r) along the moving boundary2) Zero pressure on ferent in the two media so that there is side flow, taking fluid
the back end of the sample that is immersed in a fluid reseffom the slow region to the fast one. One could expect two

VOIr. (3) Zero normal flow on both sides of the samp|e_ ThepOSSible scenarios for the interface Shape after a IOng time.
interface velocity, is given by The first possibility is the existence of a SSS of the form

va=—n-k(r)VP(r,t), (2.3 h(x,t)=h(x)+H(t), 2.7
whereH(t) is a uniform displacement of the front with time,

which is much larger than the time independéix). The
second possibility is unbounded growth of the profile result-
ing in a scaling solution with the shape

wheren is the normal to the interface.
In the simplest case where there is no variatiork @nd
Py and it is well known that the solution is a flat front propa-

gating at
h(x,t)=f(x)t"2 (2.8
kPg
UnTTh (2.4 These two possible scenarios are realized by the two differ-
ent changes in the medium properties that a discontinuous
and the front slows down during its propagatidd]: perturbation can make—changes in porosity versus changes
in capillarity.
h2= kP,t. (2.5 In the case of changes in capillariBg there will be two
different driving capillary forcesP, and P,, in the two
. _ ) _ domains. We will show that this corresponds to the case of a
A. Definition of the discontinuous perturbations scaling solution. Suppose that the interface has a finite width
and steady state solutiong{SS9 sh and that the lower part has passed a distéameesh. The

We are interested in the case where there are variations @radient in pressure in the fast domain is relate®1o since
the parameters of the medium. The outstanding question i is a boundary condition for the Laplace equation on the
how will the flat line of a noiseless system be modified whenfast side(the question of how close it is and what is the exact
there are changes in the system parameters. In particular vggadient will depend orB and on the exact solutignHow-
try to deal with a defect. It is defined in an infinitely long ever, the characteristic pressure gradients—< P,)/éh so
channel of widthL, with y the direction of propagation and the characteristic velocity will be ~ sh= «(P,— P,)/éh.
x the orthogonal coordinate. We are interested in a papedn the other hand the propagation rate in the slow region is

with two values fork(r) and/orPy(r) (see Fig. 1 v~h;=«P;/h;. Suppose that there was some solution in
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which éh becomes fixed. For a large enoughthe velocity Ky— K1

Ssh will be much larger therh;. Using these velocities one Ok= PO (212
can write decoupled equations fog and sh with solutions
similar to Eq.(2.5 so the ratio between them can be esti-
mated to be

These two relations create a possibility to make real predic-
tions about real experimental problems, since otherwise it
12 would be hard to estimate and relate size and contrast in
5_h~< P2 Pl) 2.9 those systems to a theoretical model. This point will be ad-
hy Py ' ' dressed further in the part dealing with comparison of experi-
ment and theory.

This indicates that there is a scaling solution of the type We next discuss a law that relates the anglesand 6,
given in Eq.(2.8) and not a SSS. This type of solutions will (see Fig. 1. Consider the pressure near the surface and the
not be discussed in this paper. defect. Since the front velocity there is a constsgt the

On the other hand, the case of changes in porosity Velocity of the interface in thg direction isVcog(#). Thus
# Kk, the situation is quite different. Gradients will be the gradient of the potential in they direction is
bounded, so in this case we expect to see a steady statkcos(#)/k; . Since the potentials should be equal in the two
solution of the type of Eq(2.7). The actual shape will de- domains along the discontinous perturbation we get
pend on the paramete, «q,x,. In Fig. 1 we show the
basic shape of such a solution. co(6;) cof(6,)

Since we shall find that the experimentally observed pro- P i . (213
files follow this form we focus on SSS surface profiles in the 1 2
limit of long times. This is analytically a hard problem be- _ )
cause of the nonlocality of the potential. We will first derive This is analogous to Snell's law in optics: s#)x,

some general laws for those profiles and then try to calculate Sin(62)/ .. However, it has very different consequences. If
them using various methods. k1/ko~1 the equation is valid for any two close angles.

However, if k1 /k,>1 then 6,— /2 [6,=0 gives co¥6,)
=+(k1/k5)]. This is an indication of the asymmetry be-
tween the slow and fast regions of high contrasts.

We now go on to derive implicit equations for the SSS  We go on to discuss the velociw of the SSS front. The
front position. The front propagates in tlyedirection at a average pressure gradient in the direction is Py/[H
velocity Vs that is different from the velocity of fluid, . For  +h(x)] whereH is, as stated before, much larger themx).
any front positionh(x) the demand for a SSS is a uniform gg the average propagation rate \i§x) = x(x)V,P(x,y)
velocity Vg of the front. Geometrically, the fluid velocity = k(X)Po/[H+h(x)]. Since« has two values in the two

B. The steady state solution and its general properties

normal to the front will translate to a front velocity by domains we get two different average velocities;
oh = k;Po/H. However,V, is constant. The obvious conclusion
n

(2.10 s that the flow over most of the channel is with the two
former characteristic velocities while in a small region near
the SSS front the two flows are combined by side flow to

wherev! is the front velocity calculated using E.3) from  create a common propagation rate in the channel. Because of

the height-dependent pressud¥(x) is the angle between conservation of current the SSS propagation rate should be
the x direction and the front at the positiomx and

Vs= cog 0"(x)]’

cos{ﬂh(x)]z(drvdx)lx/lJr(dh/dx)z. We want to find a PolkiB+k(1—B)] Pok

uniqueh(x) for which the solution for the pressure generates V= H TR (2.149
a uniform surface velocity. This is a nonlocal and nonlinear

problem.

The following discussion considers some of the genera\"’here?iS the weighted average afin the system.

properties of the SSS. We first discuss the basic scaling prop- 1his in fact, gives us information about the side flow.
erties of the solutiorh(x). The equations of motion are in- Assume thak,= k. Since the propagation rate in the fast

) ) region is larger than the average, an amount proportional to
variant un.de.r the transformatiox _X/—L’ y—ylL, andh the deficit in the current should be transported to the slow
—h/L. This indicates that the solutidn(x) has the scaling reqgion. Therefore the total lateral currdntin the fast do-

form main (x,) should be

h(x)=Lf(x/L), (2.11 l,=(Vo— Vo) (x—0.5) (2.15

wheref is an unknown scaling function and the width of the
solution scales ak. In what follows we shall always rescale
the system width td.=1.

In addition one can transform;—\«;. Thus the SSS
shape depends only aty /«x,. The relevant parameter that
defines the solution is the contrast: Any solution must satisfy these equations.

and in the slow regionk;) it will be

le=(Ve—VX. (2.16
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C. An approximate analysis for the steady state form (Ve—Vy)
for all contrasts h2(x):H2+;—%x2=H2+ E,(x—0.5>2.
We now turn to calculate the shape of the SSS. We note «2(Po=P) (2.22

that it is defined a®i=h(x)+H(t). The lengthH(t) will
scale according to the average propagation rate, wifi¢ It is easy to find that
is time independent. Since we know that the front is flat at
zero contrast it is natural to first try a perturbation theory -E K18 2.23
with the strength of the contrast as a parameter. From this 27 ,(1-8) ’
approach one can derive a first order estimate for the profile. o ] ) .
In general, this should be a useful approach. Estimating the potential gragents in the two extrema by
However, we find that in our case this perturbation theorythe scaleH; we getPo—P=Po«xH;/xH. SinceH, is re-
is a problematic method. The sharp change in the parametelated toH, as«;/H;=«,/H, we find
of the problem leads to divergences in the second order ) )
theory that do not appear in the original problem, and to a Ho— H.= K2 { B — (1-8) —
: ; ; ; 2 1 .
first order solution that is not smooth enough. So while the
failure of this approach is an interesting issue, the details of (2.29
this approach are given in the Appendix.
In lieu of a perturbation approach, we turn to an approxi-
mate theory, which will nevertheless be good to all orders.

SinceH,—H;=H,(x,/x;—1) we can finally get

2 _ 2
We first remind the reader of our results on the steady state Hf:_Kl—KZ B (k—kKqp)+ (-4 (k3= 1) |.
propagation rat¢Eq. (2.14]. We found out that the veloci- k(K= K1) | 4Ky 4k
ties in the two regions are different over most of the system (2.29

a_r:jd tfr|1at the(rje IS 3.f$m‘?" reglotnhnear (tjhelﬁ;rst;?t\yvvhedre thtere 'Rote thatH, does not dependn the total lengthH. This
side flow and moditications in the gradie - We denote  nfirms our original expectation. It also enables us to cal-
the distances of this transition point from the points of zero

. : . culate the following angles:
slope of the interface in the two regimestdg andH, and gang

define the pressure at this pointRs The average gradients (k—ky)
in the active region will be tan(6;) =2 PITRERS (2.26
PO_E - k
(VyP(Xy))=——, (2.17 _(kko)ky
y h(X) tar( 02) 2 KK2H1 (X 05) (227)

whereh(x) is the distance from the line defined by, and  From the angles one can calculate the heights of the parabo-
is a refinement of the definition in E@2.7). If we assume las in both regions, which we denote &8s, and sh,. These

that this gradient is constant then the average pressure gravo parameters turn out to be the convenient variables for
dient in thex direction can be estimated to Bg(P(x,y)) = comparison with the experiment.

=k[V h(X)(Po— P)/h?(x)]y. From this we can find the It is interesting to discuss the two limit8«<1 and

current in thex direction: >1. One can easily find that wheix is close to 0,
o V(X)(Po— P — PP VB(1-p)
|X:_I“X)ki Mzdz:—fqvxh(x) ° Hi=———. (2.28
0 h2(x) 2
(2.18
tan(6;) =tan(6;) = ok VB(1-B), (2.29
This equation together with the equations for the side flow,
(2.195 and (2.16, allow a calculation of the shape of the J(1-8)8°
interface. The differential equations fbfx) in the two do- ohy = 6« 4 ' (2.30
mains are
— PO—E Sho= Sk —‘(1_’8)'8 (2.30)
kVxh(X) —5—==(V,=Vy(x-05, (219 2 4 ' '
— while for large 6k,
— Py—P
k1Vyh(x) 5 = — (V1= Vyx. (2.20 Ky 112
Hl:((l—B)Kz ’ (232
The solutions for these equations are parabolas with curva-
turesg; andE,: tan(6;)=B(1—B) ok~ 2, (2.33
(Vs—V1) Sk \12
hy(X)=H;+ —————x*=H;—E;x%,  (2.2)) tan( 6 =<—> , 2.3
k1(Po—P) )= s p) (239
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_ 3
5h1:—V5K(14’8)B’ (2.35
sh,= 8k~ V41— )52 (2.39

In the regime of6k<1 a linear dependence afk is ob-
served, as one gets from the simple perturbation theory.
However, when the contrast is large we observe a change to
a dependence ofk’°. Then the angles and the width in the
fast region decay asx °° while in the slow region the
width growth asé«%° and the angle is closer to 90°. The
crossover is expected @ik~ 1.

To summarize, the main results of the theory are as fol-
lows: FIG. 2. Schematic representation of the setup. Top Wi®p)

(a) The interfaces are paraboliEq. (2.22)]. and side view(bottom. (1) Adjustable supports2) glass top and

(b) The height of the region in which sideflow occurs, bottom,(3) metal spacers4) filter paper with defects(5) immer-
H,, is given in terms of the permeabilities and the defectsion cell, (6) plastic cover to prevent evaporatioli7) metal

—
Vi i i i i E i i

width B. weights, (8) filling and emptying holes.
(c) The parameters of the parabolas can be calculated
onceH; is known, for example, the angles at the edges are . THE EXPERIMENT

given by Eq.(2.27.

(d) We find that there are two basic scaling regions, as a
function of the contrasb. For example, the scaling @h, , The setup is shown schematically in Fig(s2e also Ref.
changes drastically in the two limits. In the log« region  [11]). The experiment consists of a capillary driven wetting
both heights are linear witldx. In the highsx regimesh,  front of clean(deionized water, propagating horizontally in
increases as a square root whitk, decreases as a square filter paper. The paper mediuffilter paper made by What-
root [Egs. (2.32)]. man, grade 91 of horizontal dimensions 2030 cnf (4 in

Our results are only approximate mainly due to the tranFig. 2, is sandwiched between glass top and bottom plates
sition from Eq.(2.17 to Eq. (2.18, which is based on the of dimensions 4830 cnt (2 in Fig. 2. The top glass plate is
assumption of a constant gradient in thelirection. We can  thick (1.2 cm) to minimize stress bending, which may affect
check our estimates against the exact cosine reld@at® the front. The top plate rests on two thin metal spa¢@ns
derived previously and against the perturbation theory.  Fig. 2), of thickness 0.018 cm. The spacers are slightly thin-

It is easy to see that the constant cosine relation is kept ifier than the papepaper thickness: 0.02 gmConsequently
the nonlinear domain sincef,~m— Sk %% and 6, the paper touches both top and bottom plates. One end of the
~ 8k ~95 However thereis a mismatch in the valilee co-  Paper protrudes from the plates and is immersed in a rectan-
sine relation is not 1 but some other constant relate@)to  gular cell, of dimensions 328x2 cn? (5 in Fig. 2. The
The mismatch is small as |0ng ﬁs's not too close to zero or cell is filled from below to minimize fluctuations in the ini-
one. tial conditions(8 in Fig. 2. Metal weights are attached to the

In fact one can use the cosine re|at@]13) as a consis- bottom of the immersed side of the paper to improve the
tency check for the parabolic solution. We use it to finduniformity of the initial wetting(7 in Fig. 2. Evaporation is

A. Apparatus

another relation betweef;, andE,. We first note that prevented by the glass top and a plastic cover near the im-
mersed edgé6 in Fig. 2.
tan(6,) =E, B (2.37) A salient property of wetting fronts in porous media is

their slowing down14]. We define the proportionality con-
stanta= «P, by Eq. (2.5 (see inset in Fig. B

(h)?=at. (3.1

tan(6,) =Ex(1—-B). (2.38

Using this we can write the cosine relation using Eés.

Generallya depends on the properties of the paper and of the
k1(1+ BPED) =k [1+(1— B)%E3]. (2.39  fluid a~yrcos@)/n, wherey and 7 are the fluid surface
tension and viscosity, respectivelythe typical pore size in
the paper, and the wetting contact anglgl4]. « is an ex-
perimental estimate otP, [Eq. (2.5)].

The width of the front, defined as the distance from the
(2.40 completely dry region to the saturated wet region, is smaller
than 0.1 cm. This allows us to get precise measurements of
«. We measured=0.22+0.01 cn?/s for propagation of the
So the approximate method may also be inaccurate in thentreated paper, parallel to the effective fiber orientation.
small 8« limit, since we get an interface even for zero con- Plugging into Eq(3.1) y=73 erg/cid, »=0.01 g/cm s, and
trast (6k=0). r =10 um (the particle retention size given by the manufac-

Using this relation and using EQ.23 we find thatE, is

g2- ¢
1=—F%2-
Ko 3
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"Gray level” (arb. units) FIG. 4. A wetting front with defects. The top and bottom show
the fast-slow-fast regime and slow-fast-slow configurations, respec-
FIG. 3. The effective propagation rateas a function of the tively (the printed parts are darkefhe front propagates from bot-

“defect strength” or “gray level” of printing. The gray level is the tom to top. The pictures were taken about 30 min from the begin-
amount oftoneradsorbed on a square grid. Gray lev@l is plain  ning of the run. The papers are 18 cm wide with a width distribution
paper. The inset shows the time dependence of the square of th@tween the slowd=0.11 cnf/s) and fast &=0.22 cnf/s) zones
interface position for the particular case of gray levél « is the  of % % % The scale bar is 1 cm.
slope in that graph.

The paper is placed with the printed face down. This im-
turer) gives 6= 88 (for similar measurements in other fluids proves the optical contrast between the wet and the dry sides
see the third part of Ref14]). of the front(we use reflected light The imaging equipment

A typical run duration is 1 Hsee inset in Fig. B The  consists of a charge-coupled device can{@any XC-75CE
paper was not pretreated: oven drying and storage in a nitrqgith a 28 mm lengNikon 1:35, placed abotl m above the
gen atmospheréto minimize humidity and prewetting ef- paper sample. The digitization matrix is 78612 and typi-
fects did not change the averageand did not significantly  cally covers 1& 12 cnf. The geometrical distortion of the
affect its statistical spread. _ o image was less than 2%. The accuracy in resolving the front

To apply defectswe create regions with different. A s apout 5 pixels. In a typical run we averaged over 20—30
main experimental advantage of using defects is the progames. This was done with a code that we added to the
nounced profile that they induce. Consequently the strcltistice;}rmj‘ge analysis software “NIH Image 1.6.” The code auto-
difficulties incurred in our previous work on free wetting matically identifies the propagating front and stores it on a
fronts (Ref.[11]) are considerably reduced. disk at predetermined steps in time or space. The algorithm

In practice, there are a number of ways to treat paper an@ pased on subtracting two consecutive images and then
create defects. We tried mechanical treatments such as Prégresholdingno below the average, whekeis the standard
sure, with and without high temperature, as well as othegevyiation of the picture gray levels amd a number that
treatments such as coating with silicone and wax. None ofharacterizes the noise in the image. This algorithm is ca-

these methods was as good as printing, in terms of uniforyaple of identifying a wide variety of fronfd5].
mity and the reproducible effect on the front. There are also

many fluids that can be used instead of water. Organic fluids
are advantageous because they do not interact with the fibers
[14]. However, the width of the front created by fluids like  In Fig. 4 we show two typical profiles of a wetting front
tetradecane and silicone oil is an order of magnitude largewith defects, in the configurations fast-slow-faat=0.22,
than the width of the front created by water. 0.11, 0.22 crffs, top picture in Fig. $and slow-fast-slow
Our defects are produced by printing a blagk gray (=0.11, 0.22, 0.11 cAfs, botton). The slower propagation
stripe with a laser printefwe use an Apple Laser Writer in the printed region induces a curved profile, extending over
Pro630 printer with M6018/A tonen. The printing slows the entire system. The flattening of the front towards the
down the propagation, presumably by partially clogging theedges(lateral paper-air boundarys related to the fact that
paper and reducing the area available to the propagatingpere is no side flow at the edge. This justifies the use of
fluid. The strength of the discontinous perturbation could beperiodic boundary conditions in the theoretical description.
varied by using different shades of gray scaling the same In Fig. 5 we show eighteen consecutive digitized profiles
grid). We consider plain paper as a defect of strength zeradn the slow-fast-slow configuration. The profiles in the pic-
The effect of thegray levelon «, which represents our “de- ture represent the experimental raw data and include the end
fect strength” is shown in Fig. 3w varies from 0.130.02  of the transient leading to a steady stéiest 2 cm) followed
cni/s for black paper, to 0.220.02 cnf/s for untreated by the experimental steady state regime. The small scale
white paper. Although printing has a macroscopic effect omoise in the profiles is larger than the digitizing noi€el
the front, it is a surface treatment. Inspecting a cross sectioom). It is inherent in all the runs and must be averaged over.
of the printed paper under a 0microscope objective, we About 10 profiles per run suffice to smooth the profile. The
found that about 10% of the thickness of the paper is coveredoise is especially evident at the edges, often influencing the
by the printing toner. flattening mentioned above. However, the signal to noise ra-

B. Characterizing the fronts
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FIG. 5. A series of consecutive profil¢gropagating from bot-
tom to top in the steady state regime. The widths distributioé,is
1. 2. The regions are marked by the dashed lines.

tio of the profile is significant even without averaging. We
have previously shown that the system without defects de-
velops a large scale big1]. In the present case, the profile
induced by the printing prevails over the bias, which is small
in comparison and does not interfere with the measurement.

IV. QUANTITATIVE COMPARISON BETWEEN THEORY

FIG. 7. The average width of the profile as a function of time
AND EXPERIMENT

show that the system attain a steady state. The run in the picture is

Our theoretical approach was centered on the fact that thoW-fast-slow of width 18 cm. In this run=0.22+0.01 cn/s.
flow field is fully two dimensional. The importance of this
was seen in the case of roughen[id], where two dimen- (and coloj as in chromatograph18]. As expected from a
sionality introduces a nonlocal term in the equation for theflow system, the flow lines, which mark the corresponding
front. This also serves to rule out a description in terms ofinterface propagation rate, are perpendicular to the front.
KPZ-like models[16]. The steady state front an@) are The two basic features of the model that enable us to
obviously sustained due gde flowfrom the fast to the slow derive theoretical predictions are that the height scales with
regions. To identify this flow experimentally, we resorted tothe system size and that the shape depends only on the con
a dye visualization technique. A few ink drops are spread ofrast 5« = («,— k1)/x;. We could not check the system size
the paper in anticipation of the front. The ink is swept by thedependence experimentally, since for small system size the
flow, leaving behind a track of the flow trajectory. This is noise was comparable to the defect profile. Even so, we can
shown in Fig. 6, where a horizontal array of 15 drops ofrely on them to compare theoretical and experimental results
black ink was placed in the way of the front. Notice that theusing thea values.
polydisperse ink colloids separate according to their size Animportant ingredient in our model is the existence of a
SSS as shown in Fig. 5. Our theory predicts that a SSS exists
07 . T only if the printing changes the volume available to the fluid,
but leaves the capillary forces unchanged. This supports the
: idea that the toner acts mainly to clog the paper and change
06 |- ] the permeability. The process of approaching a steady state
: can be described by the width of the profile, which decreases
to a constant value. Figure 7 shows the average width of the
profile as a function of time from the beginning of the run.
The steady state is attained after an initial transient lasting
¢ b it XXX 3t ¢ beed about one width of the largest stripe in the papef2. We
use this as a criterion for attaining a steady state and analyze
04 ' ' ‘ ; ' ‘ the profiles in that regime.
The existence of a steady moving profile dictates a global
average propagation rate, given by E2.14), for the hybrid

FIG. 6. An array of black ink spots is placed in front of the SYStém. The propagation rate is defined by the average over
interface. The thin line serves as a guide to show the interface aftdP€ individuala’s, weighted according to the relative widths
the experiment was stopped. The swept ink marks the flow linesOf the stripes. This result is shown in Fig. 8. The figure was
The side flow from fast to slow regions is evideisee text The  Obtained by repeating the experiments with different relative
run was stopped after the front reached the position shown in th@idths S. A linear regression is done on the experimental
figure and the paper was put to dry. The faint lines above the fron€lata, and the fitted line is shown in the plot. The fact that the
represent weak wrinkling which is due to the drying process. data appear to fall on a straight line is consistent with the

05| ts 3 |
?

Average Width (cm)
-

Time (100 s)
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a (cm?s) As seen in Fig. 9, this gives a slight deviation at the discon-

024 tinous perturbation, and a corresponding jump in the fitted

| ‘ ' ' ' parabolas.

022 | B A delicate point, emphasized by the theory, regards the
symmetry between the profiles in the fast-slow-fast and the

02 . slow-fast-slow configurations. In principle, the two configu-

o1s | | rations s_hould be symmetric to translations by _ha_lf a “wave-

’ length,” i.e., by one stripe. Conceptually, this is implied by

0.16 L ] the periodic boundary conditions assumed in the theory, and
is experimentally equivalent to an infinite number of stripes.

0.14 |- 1 This is most closely approached in thes 5 configuration,

o L | and is supported by the flattening of the interface near the

’ paper-air boundary.

0.1 Furthermore, the theory predicts that for small contrast

the profile in the fast and in the slow domains should be
B symmetric under an up-down inversion with respect to the
flow direction. This symmetry should be lifted by a rise in
FIG. 8. « as a function of the relative printed portiog the contrast. This can be checked by comparing a slow-fast-
=Lprinted/ Lo~ The €xperiments were performed in a slow-fast slow profile with an inverted profile of the fast-slow-fast
configuration of varying relative width. Zero in the graph refers to stripe formation as a function afx. In Fig. 10 we vary the
plain paper and 1 to printed paper. Each point is the average qiscontinous perturbation strength frodk=0.1 to J«k
three measurements. The typical statistical spread is represented byg 99. \We obtain symmetric fronts for small defect strength
the error pars. We estimatg a line by a linear fit to the points. The( 8x<0.15), which is gradually lost as the defect strength is
graph is linear in accord with Eq2.14). raised abovesk=0.5. The discontinuity of the derivatives
described in the paragraph above exists only for defects with
asymmetric profiles.
We can useH; to get 0;, [Eq. (2.27)]. Knowing the
rivatives at the edges of the parabola and its width, we can

theoretical prediction of Eq2.14).
The theory gives an explicit prediction for the shape of
the profile. This is a parabolic curve whose two parameter%I e

are defined by the width and by the permeability contrast : . .
) : obtain the parameters, , and also the heightéh,,. This
dx. The comparison of the measured profiles to the theoretbrediction iz given in tlﬁze inset of Fig. 119 Thisl'rf)resents a

ical prediction of a parabolic shape yields good res(Hig. ; .

L . stringent test of the agreement between experiment and
gl)év-\l;r:z filct)rls acr?(;r::d ggé ?neg‘;‘:ﬁtggrgg{ntsh?r;ft jgl(ijt f%rf mgtheory, since there are no adjustable parameters for the fit. In
fit is mginta{ined thr%u hout the width of .the dgmaigs Thethe main part of Fig. 11 we show the remarkable agreement
fitting parameters corgpare well to the theoretical p.redic-(taking the experimental difficulties into accolritetween
tions, and are described below. At the defect, the theorexperlment and prediction. The data are normalized by the

matches the interface from both domains, while the deriva: 1€ of the sy'st'erh. Th? experimental regime is right at the
. : ; ) : . ._point of transition predicted by theornyk~1), and shows
tive is discontinuous there. In practice, the profile is :

smoothed out by the flow and the derivatives are continuous}he separat|on of the two lengtia, qnd oh,, but does. not
reach into the change of slope predicted b, . The points

in the figure are derived only from the central portion of
curves in Fig. 10(“fast” from slow-fast-slow and “slow”
from fast-slow-fast This selection minimizes the effect of
the water-air interface on the paper boundaries.

The existence of a characteristic length from the front,
above which side flow occurs and below which the flow is
uniformly forward, is an essential tenet of the theory. To
check its existence we turned again to ink tracers, placing
them this time both in front and behind the front. Figure 12
depicts the transition to side flow as a function of distance

s w . from the front. The dye was placed when the front was at the
0 4 8 12 16 second spot from the left. We then let the front propagate
X (em) until close to the next ink spot. Looking behind the front, we

FIG. 9. A comparison of the measured profil@§0 of the mea- ~ Clearly see a point at which there is no longer any side flow.
sured 750 points are shoyvto the theoretical prediction of a para- H is very hard to determine precisely with this experimental
bolic shape(continuous ling as predicted by Eq2.22. The ex-  technique, but we estimate it &$,~0.44 (about 7 cm di-

perimental curve is an average over 10 fast-slow-fast profiles foyided by the width of the paper 16 gnThe theoretical value
N=0.41. The boundaries are marked by the vertical dashed ”nefgiven by EqQ.(2.29] ﬁ1=0.7i 0.05.

The continous lines are the best fit to a parabotaax?. The pa-

rametera is —0.09+0.01 cm‘l and —0.04+0.01 cm‘l for the V. CONCLUSIONS

slow and fast regions, respectively. In the fast region we averaged

over the two sides. The fits display a discontinuity in the derivative. In summary, we have presented a detailed study, experi-
In the experiment the discontinuity is smoothed out due to the flowmental and theoretical, of a nonequilibrium flow system with

2 T

T T

Height (cm)
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Height (cm) 0.2 — T
25 T I: T T T :I T 6h
0.1
0 1
0 0.5 1
ox

FIG. 11. The experimental and theoretical values dbf and
Sh, (see text for details The inset shows a log-log plot of the full
predicted behavior. The experimental points were measured from
the data presented in Fig. 1for both fast-slow-fast and slow-fast-
slow configurations They depict the crossover region, marked by
the rectangle in the inset.

We end up with an excellent correspondence of experi-
ment and theory, and must emphasize that therenarizee
fit parametersIn this way we obtained quantitative results
for the propagation rate of the front, profile shapes and
heights, the depth of the perturbed flow field and the transi-
tion to asymmetric profiles with the change of contrast.

An interesting conclusion from our work is that a local
effect (defecy will have a nonlocal effect on the scale of the
full system size. This is related to side flow whose existence
is verified experimentally. A second remark is that the sys-
tem ends up with profiles that are extremely basic: simple

FIG. 10. The average profiles féic=0.1 (bottom, 6x=0.17, ~duadratic functions. Finally, we note the outstanding result,
Sk=0.51, anddx=0.99 (top). The graph was created by inverting aPparent in the perturbation theory and corroborated by the
the fast-slow-fast profiles and substituting zero for the left systen£Xperiment, that the asymmetry between the slow and fast
boundary. The fast-slow-fast configuration is lower than the slow-Profiles of the steady state solution is a tendency which de-
fast-slow forsx=0.51 and 0.99. Fosx=0.1 the defects are weak Velops with the contrast.

X (cm)

and large-scale fluctuations prevdill]. For §x=0.17 the two The theory further predicts a transition in the scaling of
curves coincide. The asymmetry starts to developsie=0.51. It  profile heights from low contrasts to high contrasts occurring
grows further fordx=0.99. at 5k~ 1. The range of contrast available to us in the experi-

ment was only fordk<1 so we could observe the beginning

a propagating front, where a defect is introduced in a Simp|@f the transition to a different scaling but we cannot observe
and tractable way. The theory for such flow in porous media
gives predictions for profiles and velocities at different defect |
structures and strength. On the other hand we have an ex-
perimental system in which profiles can be controlled and

precisely measured.

The first essential ingredient allowing theory and experi-
ments to interact is the existence of steady state solutions. A
change in the capillary forcesot porosity can generate a
completely different scaling solution for this problem. The
comparison of theory to experiment indicates that there is no
change in the capillary pressures, but we have no indepen-
dent verification of this. The other essential ingredients are FiG. 12. A picture of &, 3 experiment in which a longitudinal
that the system is dimensionless, basically becausk and  array of ink drops was placed after 50 min of riwhen the inter-
that all results depend only on the contra8k=(x, section of the front and the centerline of the paper was at the second
— 1)/ kq. Problems of roughness and noise are avoided bjnk drop from the left. The final position of the front is marked at
having the strong perturbation of a defect, by averaging anthe leftmost ink drop. The figure shows the transition to side flow as
by discussing only the steady state solution. a function ofh. Side flow only occurs up to a certain length .

|

}
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the second scaling regime. This would be a very interestingyhere we used the fact thﬁk(x) is orthogonal toV ¢ .

future objective. The last equation already tells us that the perturbation theory
Theoretically, the obvious extension of this system is tojs going to be problematic in the discontinuous perturbation

vary the capillary pressure®; andP; to generate a scaling case, sincé, is singular.

solution for the profile. This presents an interesting experi- The boundary conditiofBC) P(h)= P, becomegto or-

mental challenge. Other extensions include random arrays @fgr ) 2

defects and the interaction between them, and introduction of

fluctuations in capillary forces which will hopefully lead to ¢o(hg) =Py,

complex yet tractable propagating front solutions.

Doyl hO)Fl"_ ¢1(hg) =0,

ho)Na+ 1y (ho)hy+ dba(hg) = 0. A7
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Webman for numerous helpful discussions. The work was

ACKNOWLEDGMENTS

funded in part by the Minerva Center for Nonlinear Science. ho= — koy(ho),
APPENDIX: CALCULATION OF THE SHAPE hi= — k[ 1y (ho) +K(X) dgy(ho)]=const.
OF THE PROPAGATING FRONT . o o
USING PERTURBATION THEORY ho=— k[ d2y(ho) + ¢1yy(No)N1— P1x(No)N1y
Consider a front with a small perturbation lirfx) and a +Kk(x) ¢1(ho)]=const. (A8)
small variation ink(x). The dynamics of the propagating
front is given by Darcy’s law: We finally obtain the obvious results f@f,:
y P
h(x,t)=—«(x)Py(h), (A1) -0
Y V2¢O:O ¢0 hO y
. N )
where we assume/1+(dh/dx)?~1, andh is the front's $o(ho)=Po (BC) P Ko
propagation rate. We wish to find the SSS front propagation " hy
rate and shape in this case. We remind the reader that
h(x,t) =const in this case. getting again the average velock given in Eq.(2.14).
To do this we expandP(h) andh near anh, [which is To solve the differential equations for, andh, we con-
some largeH (t) in Eq.(2.7)] in powers of a small parameter sider the Fourier expansion bf(x), k(x), and ¢, (in nor-
Al malized unit$
h=ho+Ah; +\2h; — -
0 ! 2 hi(x)= > h,coq mmx), (A9)
P(h)=go(h)+ X ps(h) +N\¢y(h) +--- m=t
#i(h)= ¢i(hg) + ¢; y(ho) (Nhy+N%hy) =
1 — o k(x)= 2, kmcog7mx), A10
+3 Byy(No) (NP1 +A7hy) 4+ (0= 2, kncosmmy) (A10)

(A2) *
b1(x,y)= 2, Assinhnmy)cogmnx).  (All)
We also expandk(x): n=1
K(X) = K4 K(X), (A3) Equation(5.7) connectsA, andh,,
here k is defined in Eq(2.1 dk(x) i lized Pohi
where « is defined in Eq/(2.14 andk(x) is a normalize An——m. (A12)

function that describes the geometry of the media. Insertion
of these terms into the equations for the dynani&8) gives

up ton2: Using Eq.(5.8) and the fact that tank) is one for largex,

we get:
VZ¢o=0, (Ad) — ks
] ) hl—%, (A13)
VK(X)-V o+ V2¢h;=0=V2¢,=0, (A5)
Pokn
n (A14)

V2, + VK(X)- V1= 0=V2h,= —K,Xb1 5,  (AB) “hymn sinh(nwhg)
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The calculation foﬁz is more complicated. One uses Egs.
(5.6) and (5.7) to derive expressions fo$, and h,. After
some calculation we get

— C,+D
n_ n n
h>=B, o (A15)
where the coefficients are given by
o (koo tknek
B 2 ( n—I In-%—l) | (A16)
Zon-l n+1
Co=2, T kn-tkit Kok, (AL7)
D=2, ky_ki. (A18)
I=1
(A19)

For the case of the defect the natural choicekix) is
given by:

k(x)={ (1—B)sgnk,—k;), L(1—pB)2<x<L(1+p)/2
B sgnk,—ky), L(1+B)2<x<L.
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Expandingk(x), ¢1(X,Y), andﬁl(x) in Fourier series and
inserting in Eq.(5.13), we obtain

Po <« (—1)Msin(Bmm) sinh(2mmy)
$1(Y)= T mE:l m? sinh(2mahg)
X cog 2mmrx) (A20)
1 ( 1)m+1
hy(x,B) = — 2 7 sin(Bmm)cog 2mmx).
(A21)

Though the solutiot; is regular, it is interesting to note
that the angle at the defects is alway&. While this result
is in accord with the cosine relation, it is not in accord with
our initial assumption in the perturbation theory, that ééx)
is small all along the front, Eq5.1).

When we try to calculate the second order term we get
into more trouble. The gradients kfx) are not continuous,
and therefore the corrections near the transition point will be
discontinuous and not in accord with E§.20).
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