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Defects in wetting fronts: Experimental and theoretical results

O. Zik,1 T. Kustanovich,2 E. Moses,1 and Z. Olami2
1Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot 76100, Israel

2Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
~Received 28 August 1997; revised manuscript received 13 March 1998!

We study flow in a porous medium in the presence of a discontinuous perturbation~defect! that perturbs its
parameters. The discontinuous perturbation is at the interface between regions of different porosities, produced
in the experiment by uniformly depositing black toner with a laser printer. When water propagates in such a
medium the wetting front develops a nontrivial, curved steady state solution. We present experimental mea-
surements of the profiles and their propagation rate, as well as the characteristics of the steady state solution.
A naive attempt to use perturbation theory fails due to discontinuities at the ‘‘defect.’’ We proceed to develop
a theoretical treatment based on Laplacian flow, that is good to all orders and predicts most of the features that
can be observed. We find good quantitative agreement between theory and experiment, without any fit param-
eters.@S1063-651X~98!14706-2#

PACS number~s!: 47.55.Mh, 47.15.Hg, 68.45.Gd
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I. INTRODUCTION

The role of ‘‘defects’’ in nonequilibrium systems is a
intriguing question that has recently received much attent
Defects are a spatial manifestation of singularities in the
der parameter, and as such they teach us both about the
parameter and about the medium itself. Inequilibrium sys-
tems the role of imperfections and impurities, grain boun
aries and point dislocations in determining material prop
ties such as rigidity, strength, flexibility, and elasticity is we
known@1#. However, innonequilibriumsystems the situation
is more complex@2#. Nonlinear dynamical systems exhib
more complicated ‘‘defect’’ solutions such as kinks a
propagating fronts@3#, as well as more recent observatio
on spirals or targets in systems such as convection@4# or the
Belusov-Zhabotinsky reaction@5#. These have been shown
play an important role in the transition of spatially order
systems with wave dynamics to spatial decoherence and
bulence@6#.

The tools for treating discontinuous perturbations are a
less developed in the nonequilibrium case. Since defects
marcate the border between phases of the system, the h
topy structure of phase space at equilibrium has been use
classify the transitions between the phases@7#. This has been
less effective in nonequilibrium systems, where the topolo
cal properties are not always of relevance.

What is clearly lacking is a nonequilibrium system that
rich enough to exhibit interesting ‘‘defect’’ structure and
long range influence of the discontinuous perturbation, wh
being simple enough to handle analytically. We present h
such an example, a wetting front in which a spatial inhom
geneity is controllably inserted by changing the local perm
ability in a precise fashion. The advancing front is perturb
by a change in permeability, and creates an angle differe
at the border between areas with different permeability co
ficients.

We have previously shown that an undisturbed fro
known to be hydrodynamically stable@8–10# exhibits very
weak roughness@11#. If the paper is isotropic then th
height-height correlation functionC(L) is predicted to be
PRE 581063-651X/98/58~1!/689~11!/$15.00
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logarithmic in the spatial dimensionL. The correlations can
be enhanced by going to anisotropic paper with an aver
directional order in the fiber orientation. We have measu
in that case power law correlationsC(L);L0.4. Thus a front
without defects is simple, stable, has very little or no cor
lated structure in it, and may be completely understood a
lytically @11#. Although the theory is fully consistent with th
experimental results, an undetectable~logarithmic! scaling,
does not allow a quantitative verification. One solution is
perturb the system and produce a pronounced response,
out leaving the scope of the model. This is what the defe
do. This approach can serve as a test to any theory
would claim to deal with strong disorder in porous media

We are considering here the case of complete wett
Defects in the case of partial wetting were considered pre
ously by @12#. In that case the equilibrium energy conside
ations and balance of forces dictate a completely differ
configuration and steady state profile than the one we
serve. Defects have also been considered in the contex
front propagation for the restricted solid on solid~RSOS!
model and the equivalent Kardar-Parisi-Zhang~KPZ! equa-
tion @13#. No experimental verification of any of these pr
dictions has been reported.

In this paper we treat the conceptually simple problem
a wetting front propagating in a porous medium with tw
different permeabilities. The boundary between them is
discontinuous perturbation. In Sec. II we develop the th
retical approach that accounts for the influence of the disc
tinuous perturbation on the front. We first present the eq
tions of motion, then show that steady state solutions e
only for a change inporositybut not incapillarity. We show
why a naive perturbative approach does not work, and t
proceed to present a more complete theory for the two
mensional flow field, based on assumptions of side flow~that
we verified experimentally! in a region adjacent to the front
In Sec. III we describe the experimental and concept
setup—including a simple technique of depositing printi
toner with a laser printer as a controlled method for prod
ing defects in the medium. We find that the theoretical
sumptions agree with the experimental conditions. In Sec
689 © 1998 The American Physical Society
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690 PRE 58O. ZIK, T. KUSTANOVICH, E. MOSES, AND Z. OLAMI
we compare the predictions of the theory regarding the ‘‘
fect’’ structure with the experimentally measured profile in
quantitative fashion, yielding very satisfactory agreeme
Section V includes some conclusions, perspectives,
thoughts for the future.

II. THEORETICAL ANALYSIS OF THE PROBLEM

The motion of fronts in a porous medium was extensiv
studied in the context of two immiscible fluids@8#. The basic
physics of these phenomena is that of two dimensional fl
of water in the wet domain of porous media bounded by
moving front and the walls. The driving mechanism of t
moving front is the capillarity, which creates a pressure ju
P0 at the air-water boundary. The propagation rate in a m
dium that is characterized by a spatially fluctuating lo
permeabilityk(rW), obeys Darcy’s law:

vW 52k~rW !¹W P~rW,t !, ~2.1!

whereP(rW,t) is the site dependent pressure. The equation
continuity for the velocity give the following equations fo
the pressure:

¹@k~rW !¹W P~rW,t !#50W . ~2.2!

If the parameterk is uniform then the equation of motion fo
the pressure will simply be the Laplace equation.

The boundary conditions for a flow that is driven by co
stant capillary forces are as follows:~1! A capillary pressure
2P0(r ) along the moving boundary.~2! Zero pressure on
the back end of the sample that is immersed in a fluid re
voir. ~3! Zero normal flow on both sides of the sample. T
interface velocityvn is given by

vn52n̂•k~rW !¹W P~rW,t !, ~2.3!

wheren̂ is the normal to the interface.
In the simplest case where there is no variation ofk and

P0 and it is well known that the solution is a flat front prop
gating at

vn5
kP0

h
~2.4!

and the front slows down during its propagation@14#:

h25kP0t. ~2.5!

A. Definition of the discontinuous perturbations
and steady state solutions„SSS…

We are interested in the case where there are variation
the parameters of the medium. The outstanding questio
how will the flat line of a noiseless system be modified wh
there are changes in the system parameters. In particula
try to deal with a defect. It is defined in an infinitely lon
channel of widthL, with y the direction of propagation an
x the orthogonal coordinate. We are interested in a pa
with two values fork(rW) and/orP0(rW) ~see Fig. 1!
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P~x!,k~x!5H P1 ,k1 ,
P2 ,k2 ,
P1 ,k1 ,

0,x,L~12b!/2
L~12b!/2,x,L~11b!/2
L~11b!/2,x,L,

~2.6!

whereb is the fraction of the system size that has the p
meabilityk2 , and the indices 1, 2 stand for the two domain
The velocity under the same potential gradient will be d
ferent in the two media so that there is side flow, taking flu
from the slow region to the fast one. One could expect t
possible scenarios for the interface shape after a long ti
The first possibility is the existence of a SSS of the form

h~x,t !5h̄~x!1H~ t !, ~2.7!

whereH(t) is a uniform displacement of the front with time
which is much larger than the time independenth̄(x). The
second possibility is unbounded growth of the profile resu
ing in a scaling solution with the shape

h~x,t !5 f ~x!t1/2. ~2.8!

These two possible scenarios are realized by the two dif
ent changes in the medium properties that a discontinu
perturbation can make—changes in porosity versus chan
in capillarity.

In the case of changes in capillarityP0 there will be two
different driving capillary forces,P1 and P2 , in the two
domains. We will show that this corresponds to the case
scaling solution. Suppose that the interface has a finite w
dh and that the lower part has passed a distanceh1@dh. The
gradient in pressure in the fast domain is related toP1 , since
it is a boundary condition for the Laplace equation on t
fast side~the question of how close it is and what is the exa
gradient will depend onb and on the exact solution!. How-
ever, the characteristic pressure gradient is (P22P1)/dh so
the characteristic velocity will bev;ḋh5k(P22P1)/dh.
On the other hand the propagation rate in the slow regio
v;ḣ15kP1 /h1 . Suppose that there was some solution

FIG. 1. A representation of the form of a steady state soluti
as the front propagates from the wet to the dry region, in the co
bined regions ofk1 and k2 . The arrows schematically mark th
flow lines.dh1,2 represent the relative width of the first and seco
regions. The anglesu1,2 are the angles near the defect.
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which dh becomes fixed. For a large enoughh1 the velocity
ḋh will be much larger thenḣ1 . Using these velocities on
can write decoupled equations forh1 anddh with solutions
similar to Eq.~2.5! so the ratio between them can be es
mated to be

dh

h1
;S P22P1

P1
D 1/2

. ~2.9!

This indicates that there is a scaling solution of the ty
given in Eq.~2.8! and not a SSS. This type of solutions w
not be discussed in this paper.

On the other hand, the case of changes in porosityk1
Þk2 the situation is quite different. Gradients will b
bounded, so in this case we expect to see a steady
solution of the type of Eq.~2.7!. The actual shape will de
pend on the parametersb,k1 ,k2 . In Fig. 1 we show the
basic shape of such a solution.

Since we shall find that the experimentally observed p
files follow this form we focus on SSS surface profiles in t
limit of long times. This is analytically a hard problem b
cause of the nonlocality of the potential. We will first deriv
some general laws for those profiles and then try to calcu
them using various methods.

B. The steady state solution and its general properties

We now go on to derive implicit equations for the SS
front position. The front propagates in they direction at a
velocity Vs that is different from the velocity of fluidvy . For
any front positionh(x) the demand for a SSS is a unifor
velocity Vs of the front. Geometrically, the fluid velocity
normal to the front will translate to a front velocity by

Vs5
vn

h

cos@uh~x!#
, ~2.10!

wherevn
h is the front velocity calculated using Eq.~2.3! from

the height-dependent pressure,uh(x) is the angle between
the x direction and the front at the positionx and
cos@uh(x)#5(dh/dx)/A11(dh/dx)2. We want to find a
uniqueh(x) for which the solution for the pressure genera
a uniform surface velocity. This is a nonlocal and nonline
problem.

The following discussion considers some of the gene
properties of the SSS. We first discuss the basic scaling p
erties of the solutionh̄(x). The equations of motion are in
variant under the transformationx→x/L, y→y/L, and h̄
→h̄/L. This indicates that the solutionh̄(x) has the scaling
form

h̄~x!5L f ~x/L !, ~2.11!

wheref is an unknown scaling function and the width of th
solution scales asL. In what follows we shall always rescal
the system width toL51.

In addition one can transformk i→lk i . Thus the SSS
shape depends only onk1 /k2 . The relevant parameter tha
defines the solution is the contrast:
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dk5
k22k1

k1
. ~2.12!

These two relations create a possibility to make real pre
tions about real experimental problems, since otherwis
would be hard to estimate and relate size and contras
those systems to a theoretical model. This point will be
dressed further in the part dealing with comparison of exp
ment and theory.

We next discuss a law that relates the anglesu1 and u2
~see Fig. 1!. Consider the pressure near the surface and
defect. Since the front velocity there is a constantVs , the
velocity of the interface in they direction isVscos2(ui). Thus
the gradient of the potential in they direction is
Vscos2(ui)/ki . Since the potentials should be equal in the tw
domains along the discontinous perturbation we get

cos2~u1!

k1
5

cos2~u2!

k2
. ~2.13!

This is analogous to Snell’s law in optics: sin(u1)/k1
5sin(u2)/k2. However, it has very different consequences
k1 /k2;1 the equation is valid for any two close angle
However, if k1 /k2@1 thenu2→p/2 @u150 gives cos2(u2)
5A(k1 /k2)#. This is an indication of the asymmetry be
tween the slow and fast regions of high contrasts.

We go on to discuss the velocityVs of the SSS front. The
average pressure gradient in they direction is P0 /@H
1h̄(x)# whereH is, as stated before, much larger thenh̄(x).
So the average propagation rate isV(x)5k(x)¹yP(x,y)
5k(x)P0 /@H1h̄(x)#. Since k has two values in the two
domains we get two different average velocities:v i
5k i P0 /H. However,Vs is constant. The obvious conclusio
is that the flow over most of the channel is with the tw
former characteristic velocities while in a small region ne
the SSS front the two flows are combined by side flow
create a common propagation rate in the channel. Becaus
conservation of current the SSS propagation rate should

Vs5
P0@k1b1k2~12b!#

H
5

P0k̄

H
, ~2.14!

wherek̄ is the weighted average ofk in the system.
This in fact, gives us information about the side flo

Assume thatk2>k1 . Since the propagation rate in the fa
region is larger than the average, an amount proportiona
the deficit in the current should be transported to the s
region. Therefore the total lateral currentI x in the fast do-
main (k2) should be

I x5~V22Vs!~x20.5! ~2.15!

and in the slow region (k1) it will be

I x5~Vs2V1!x. ~2.16!

Any solution must satisfy these equations.
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C. An approximate analysis for the steady state form
for all contrasts

We now turn to calculate the shape of the SSS. We n
that it is defined ash5h̄(x)1H(t). The lengthH(t) will
scale according to the average propagation rate, whileh̄(x)
is time independent. Since we know that the front is flat
zero contrast it is natural to first try a perturbation theo
with the strength of the contrast as a parameter. From
approach one can derive a first order estimate for the pro
In general, this should be a useful approach.

However, we find that in our case this perturbation the
is a problematic method. The sharp change in the parame
of the problem leads to divergences in the second o
theory that do not appear in the original problem, and t
first order solution that is not smooth enough. So while
failure of this approach is an interesting issue, the details
this approach are given in the Appendix.

In lieu of a perturbation approach, we turn to an appro
mate theory, which will nevertheless be good to all orde
We first remind the reader of our results on the steady s
propagation rate@Eq. ~2.14!#. We found out that the veloci
ties in the two regions are different over most of the syst
and that there is a small region near the front where ther
side flow and modifications in the gradients@17#. We denote
the distances of this transition point from the points of ze
slope of the interface in the two regimes asH1 andH2 and
define the pressure at this point asP̄. The average gradient
in the active region will be

^¹yP~x,y!&5
P02 P̄

h̄~x!
, ~2.17!

whereh̄(x) is the distance from the line defined byH1 , and
is a refinement of the definition in Eq.~2.7!. If we assume
that this gradient is constant then the average pressure
dient in thex direction can be estimated to be¹x^P(x,y)&
5ki@¹xh̄(x)(P02 P̄)/h̄2(x)#y. From this we can find the
current in thex direction:

I x52E
0

h̄~x!
ki

¹xh̄~x!~P02 P̄!

h̄2~x!
zdz52k i¹xh̄~x!

P02 P̄

2
.

~2.18!

This equation together with the equations for the side flo
~2.15! and ~2.16!, allow a calculation of the shape of th
interface. The differential equations forh̄(x) in the two do-
mains are

k2¹xh̄~x!
P02 P̄

2
52~V22Vs!~x20.5!, ~2.19!

k1¹xh̄~x!
P02 P̄

2
52~V12Vs!x. ~2.20!

The solutions for these equations are parabolas with cu
turesE1 andE2 :

h1~x!5H11
~Vs2V1!

k1~P02 P̄!
x25H12E1x2, ~2.21!
te
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h2~x!5H21
~Vs2V2!

k2~P02 P̄!
x25H21E2~x20.5!2.

~2.22!

It is easy to find that

E25E1

k1b

k2~12b!
. ~2.23!

Estimating the potential gradients in the two extrema
the scaleH1 we getP02 P̄5P0k̄H1 /k1H. SinceH1 is re-
lated toH2 ask1 /H15k2 /H2 we find

H22H15
k2

k̄H1
F b2

4k1
~ k̄2k1!1

~12b!2

4k2
~k22k̄ !G .

~2.24!

SinceH22H15H1(k2 /k121) we can finally get

H1
25

k1k2

k̄~k22k1! F b2

4k1
~ k̄2k1!1

~12b!2

4k2
~k22k̄ !G .

~2.25!

Note thatH1 does not dependon the total lengthH. This
confirms our original expectation. It also enables us to c
culate the following angles:

tan~u1!52
~ k̄2k1!

k̄H1
x, ~2.26!

tan~u2!52
~ k̄2k2!k1

k̄k2H1
~x20.5!. ~2.27!

From the angles one can calculate the heights of the par
las in both regions, which we denote asdh1 anddh2 . These
two parameters turn out to be the convenient variables
comparison with the experiment.

It is interesting to discuss the two limitsdk!1 anddk
@1. One can easily find that whendk is close to 0,

H15
Ab~12b!

2
, ~2.28!

tan~u1!5tan~u2!5dkAb~12b!, ~2.29!

dh15dk
A~12b!b3

4
, ~2.30!

dh25dk
A~12b!3b

4
, ~2.31!

while for largedk,

H15S k1

~12b!k2
D 1/2

, ~2.32!

tan~u1!5b~12b!dk21/2, ~2.33!

tan~u2!5S dk

b~12b! D
1/2

, ~2.34!
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dh15
Adk~12b!3b

4
, ~2.35!

dh25dk21/2~12b!5/2. ~2.36!

In the regime ofdk!1 a linear dependence ondk is ob-
served, as one gets from the simple perturbation the
However, when the contrast is large we observe a chang
a dependence ondk0.5. Then the angles and the width in th
fast region decay asdk20.5 while in the slow region the
width growth asdk0.5 and the angleu is closer to 90°. The
crossover is expected atdk;1.

To summarize, the main results of the theory are as
lows:

~a! The interfaces are parabolic@Eq. ~2.22!#.
~b! The height of the region in which sideflow occur

H1 , is given in terms of the permeabilities and the def
width b.

~c! The parameters of the parabolas can be calcula
onceH1 is known, for example, the angles at the edges
given by Eq.~2.27!.

~d! We find that there are two basic scaling regions, a
function of the contrastdk. For example, the scaling ofdh1,2
changes drastically in the two limits. In the lowdk region
both heights are linear withdk. In the highdk regimedh1
increases as a square root whiledh2 decreases as a squa
root @Eqs.~2.32!#.

Our results are only approximate mainly due to the tr
sition from Eq.~2.17! to Eq. ~2.18!, which is based on the
assumption of a constant gradient in they direction. We can
check our estimates against the exact cosine relation~2.13!
derived previously and against the perturbation theory.

It is easy to see that the constant cosine relation is kep
the nonlinear domain sinceu2;p2dk20.5 and u1
;dk20.5. However thereis a mismatch in the value~the co-
sine relation is not 1 but some other constant related tob!.
The mismatch is small as long asb is not too close to zero o
one.

In fact one can use the cosine relation~2.13! as a consis-
tency check for the parabolic solution. We use it to fi
another relation betweenE1 andE2 . We first note that

tan~u1!5E1b, ~2.37!

tan~u2!5E2~12b!. ~2.38!

Using this we can write the cosine relation using theEi ’s.

k1~11b2E1
2!5k2@11~12b!2E2

2#. ~2.39!

Using this relation and using Eq.~2.23! we find thatE1 is

E1
25

k1

k2b2 . ~2.40!

So the approximate method may also be inaccurate in
small dk limit, since we get an interface even for zero co
trast (dk50).
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III. THE EXPERIMENT

A. Apparatus

The setup is shown schematically in Fig. 2~see also Ref.
@11#!. The experiment consists of a capillary driven wetti
front of clean~deionized! water, propagating horizontally in
filter paper. The paper medium~filter paper made by What
man, grade 91!, of horizontal dimensions 20330 cm2 ~4 in
Fig. 2!, is sandwiched between glass top and bottom pla
of dimensions 40330 cm2 ~2 in Fig. 2!. The top glass plate is
thick ~1.2 cm! to minimize stress bending, which may affe
the front. The top plate rests on two thin metal spacers~3 in
Fig. 2!, of thickness 0.018 cm. The spacers are slightly th
ner than the paper~paper thickness: 0.02 cm!. Consequently
the paper touches both top and bottom plates. One end o
paper protrudes from the plates and is immersed in a rec
gular cell, of dimensions 323832 cm3 ~5 in Fig. 2!. The
cell is filled from below to minimize fluctuations in the ini
tial conditions~8 in Fig. 2!. Metal weights are attached to th
bottom of the immersed side of the paper to improve
uniformity of the initial wetting~7 in Fig. 2!. Evaporation is
prevented by the glass top and a plastic cover near the
mersed edge~6 in Fig. 2!.

A salient property of wetting fronts in porous media
their slowing down@14#. We define the proportionality con
stanta5kP0 by Eq. ~2.5! ~see inset in Fig. 3!:

^h&25at. ~3.1!

Generallya depends on the properties of the paper and of
fluid a'gtcos(u)/h, where g and h are the fluid surface
tension and viscosity, respectively,r the typical pore size in
the paper, andu the wetting contact angle@14#. a is an ex-
perimental estimate ofkP0 @Eq. ~2.5!#.

The width of the front, defined as the distance from t
completely dry region to the saturated wet region, is sma
than 0.1 cm. This allows us to get precise measurement
a. We measureda50.2260.01 cm2/s for propagation of the
untreated paper, parallel to the effective fiber orientati
Plugging into Eq.~3.1! g573 erg/cm2, h50.01 g/cm s, and
r 510 mm ~the particle retention size given by the manufa

FIG. 2. Schematic representation of the setup. Top view~top!
and side view~bottom!. ~1! Adjustable supports,~2! glass top and
bottom,~3! metal spacers,~4! filter paper with defects,~5! immer-
sion cell, ~6! plastic cover to prevent evaporation,~7! metal
weights,~8! filling and emptying holes.
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turer! givesu588° ~for similar measurements in other fluid
see the third part of Ref.@14#!.

A typical run duration is 1 h~see inset in Fig. 3!. The
paper was not pretreated: oven drying and storage in a n
gen atmosphere~to minimize humidity and prewetting ef
fects! did not change the averagea and did not significantly
affect its statistical spread.

To apply defectswe create regions with differenta. A
main experimental advantage of using defects is the p
nounced profile that they induce. Consequently the statis
difficulties incurred in our previous work on free wettin
fronts ~Ref. @11#! are considerably reduced.

In practice, there are a number of ways to treat paper
create defects. We tried mechanical treatments such as
sure, with and without high temperature, as well as ot
treatments such as coating with silicone and wax. None
these methods was as good as printing, in terms of uni
mity and the reproducible effect on the front. There are a
many fluids that can be used instead of water. Organic flu
are advantageous because they do not interact with the fi
@14#. However, the width of the front created by fluids lik
tetradecane and silicone oil is an order of magnitude lar
than the width of the front created by water.

Our defects are produced by printing a black~or gray!
stripe with a laser printer~we use an Apple Laser Write
Pro630 printer with M6018G/A toner!. The printing slows
down the propagation, presumably by partially clogging
paper and reducing the area available to the propaga
fluid. The strength of the discontinous perturbation could
varied by using different shades of gray scaling~on the same
grid!. We consider plain paper as a defect of strength z
The effect of thegray levelon a, which represents our ‘‘de
fect strength’’ is shown in Fig. 3.a varies from 0.1160.02
cm2/s for black paper, to 0.2260.02 cm2/s for untreated
white paper. Although printing has a macroscopic effect
the front, it is a surface treatment. Inspecting a cross sec
of the printed paper under a 203 microscope objective, we
found that about 10% of the thickness of the paper is cove
by the printing toner.

FIG. 3. The effective propagation ratea as a function of the
‘‘defect strength’’ or ‘‘gray level’’ of printing. The gray level is the
amount oftoner adsorbed on a square grid. Gray level50 is plain
paper. The inset shows the time dependence of the square o
interface position for the particular case of gray level50. a is the
slope in that graph.
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The paper is placed with the printed face down. This i
proves the optical contrast between the wet and the dry s
of the front~we use reflected light!. The imaging equipmen
consists of a charge-coupled device camera~Sony XC-75CE!
with a 28 mm lens~Nikon 1:35!, placed about 1 m above the
paper sample. The digitization matrix is 7363512 and typi-
cally covers 18312 cm2. The geometrical distortion of the
image was less than 2%. The accuracy in resolving the fr
is about 5 pixels. In a typical run we averaged over 20–
frames. This was done with a code that we added to
image analysis software ‘‘NIH Image 1.6.’’ The code aut
matically identifies the propagating front and stores it on
disk at predetermined steps in time or space. The algori
is based on subtracting two consecutive images and
thresholdingns below the average, wheres is the standard
deviation of the picture gray levels andn a number that
characterizes the noise in the image. This algorithm is
pable of identifying a wide variety of fronts@15#.

B. Characterizing the fronts

In Fig. 4 we show two typical profiles of a wetting fron
with defects, in the configurations fast-slow-fast~a50.22,
0.11, 0.22 cm2/s, top picture in Fig. 4! and slow-fast-slow
~a50.11, 0.22, 0.11 cm2/s, bottom!. The slower propagation
in the printed region induces a curved profile, extending o
the entire system. The flattening of the front towards
edges~lateral paper-air boundary! is related to the fact tha
there is no side flow at the edge. This justifies the use
periodic boundary conditions in the theoretical descriptio

In Fig. 5 we show eighteen consecutive digitized profi
in the slow-fast-slow configuration. The profiles in the pi
ture represent the experimental raw data and include the
of the transient leading to a steady state~first 2 cm! followed
by the experimental steady state regime. The small s
noise in the profiles is larger than the digitizing noise~0.1
cm!. It is inherent in all the runs and must be averaged ov
About 10 profiles per run suffice to smooth the profile. T
noise is especially evident at the edges, often influencing
flattening mentioned above. However, the signal to noise

the

FIG. 4. A wetting front with defects. The top and bottom sho
the fast-slow-fast regime and slow-fast-slow configurations, resp
tively ~the printed parts are darker!. The front propagates from bot
tom to top. The pictures were taken about 30 min from the beg
ning of the run. The papers are 18 cm wide with a width distribut
between the slow (a50.11 cm2/s) and fast (a50.22 cm2/s) zones
of 1

3 , 1
3 , 1

3 . The scale bar is 1 cm.
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tio of the profile is significant even without averaging. W
have previously shown that the system without defects
velops a large scale bias@11#. In the present case, the profi
induced by the printing prevails over the bias, which is sm
in comparison and does not interfere with the measurem

IV. QUANTITATIVE COMPARISON BETWEEN THEORY
AND EXPERIMENT

Our theoretical approach was centered on the fact tha
flow field is fully two dimensional. The importance of th
was seen in the case of roughening@11#, where two dimen-
sionality introduces a nonlocal term in the equation for
front. This also serves to rule out a description in terms
KPZ-like models@16#. The steady state front and̂a& are
obviously sustained due toside flowfrom the fast to the slow
regions. To identify this flow experimentally, we resorted
a dye visualization technique. A few ink drops are spread
the paper in anticipation of the front. The ink is swept by t
flow, leaving behind a track of the flow trajectory. This
shown in Fig. 6, where a horizontal array of 15 drops
black ink was placed in the way of the front. Notice that t
polydisperse ink colloids separate according to their s

FIG. 5. A series of consecutive profiles~propagating from bot-
tom to top! in the steady state regime. The widths distribution is1

4 ,
1
2 , 1

4 . The regions are marked by the dashed lines.

FIG. 6. An array of black ink spots is placed in front of th
interface. The thin line serves as a guide to show the interface
the experiment was stopped. The swept ink marks the flow lin
The side flow from fast to slow regions is evident~see text!. The
run was stopped after the front reached the position shown in
figure and the paper was put to dry. The faint lines above the f
represent weak wrinkling which is due to the drying process.
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~and color! as in chromatography@18#. As expected from a
flow system, the flow lines, which mark the correspondi
interface propagation rate, are perpendicular to the front

The two basic features of the model that enable us
derive theoretical predictions are that the height scales w
the system size and that the shape depends only on the
trastdk5(k22k1)/k1 . We could not check the system siz
dependence experimentally, since for small system size
noise was comparable to the defect profile. Even so, we
rely on them to compare theoretical and experimental res
using thea values.

An important ingredient in our model is the existence o
SSS as shown in Fig. 5. Our theory predicts that a SSS e
only if the printing changes the volume available to the flu
but leaves the capillary forces unchanged. This supports
idea that the toner acts mainly to clog the paper and cha
the permeability. The process of approaching a steady s
can be described by the width of the profile, which decrea
to a constant value. Figure 7 shows the average width of
profile as a function of time from the beginning of the ru
The steady state is attained after an initial transient las
about one width of the largest stripe in the paper (L/2). We
use this as a criterion for attaining a steady state and ana
the profiles in that regime.

The existence of a steady moving profile dictates a glo
average propagation rate, given by Eq.~2.14!, for the hybrid
system. The propagation rate is defined by the average
the individuala’s, weighted according to the relative width
of the stripes. This result is shown in Fig. 8. The figure w
obtained by repeating the experiments with different relat
widths b. A linear regression is done on the experimen
data, and the fitted line is shown in the plot. The fact that
data appear to fall on a straight line is consistent with

er
s.

e
nt

FIG. 7. The average width of the profile as a function of tim
show that the system attain a steady state. The run in the pictu
slow-fast-slow of width 18 cm. In this runa50.2260.01 cm2/s.
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theoretical prediction of Eq.~2.14!.
The theory gives an explicit prediction for the shape

the profile. This is a parabolic curve whose two parame
are defined by the widthL and by the permeability contras
dk. The comparison of the measured profiles to the theo
ical prediction of a parabolic shape yields good results~Fig.
9!. The fit is carried out separately for the fast and for t
slow region, and is good in both domains. The quality of
fit is maintained throughout the width of the domains. T
fitting parameters compare well to the theoretical pred
tions, and are described below. At the defect, the the
matches the interface from both domains, while the deri
tive is discontinuous there. In practice, the profile
smoothed out by the flow and the derivatives are continuo

FIG. 8. a as a function of the relative printed portion:b
5Lprinted/L total . The experiments were performed in a slow-fa
configuration of varying relative width. Zero in the graph refers
plain paper and 1 to printed paper. Each point is the averag
three measurements. The typical statistical spread is represent
the error bars. We estimate a line by a linear fit to the points.
graph is linear in accord with Eq.~2.14!.

FIG. 9. A comparison of the measured profiles~100 of the mea-
sured 750 points are shown! to the theoretical prediction of a para
bolic shape~continuous line!, as predicted by Eq.~2.22!. The ex-
perimental curve is an average over 10 fast-slow-fast profiles
l50.41. The boundaries are marked by the vertical dashed li
The continous lines are the best fit to a parabolay5ax2. The pa-
rametera is 20.0960.01 cm21 and 20.0460.01 cm21 for the
slow and fast regions, respectively. In the fast region we avera
over the two sides. The fits display a discontinuity in the derivati
In the experiment the discontinuity is smoothed out due to the fl
f
rs
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As seen in Fig. 9, this gives a slight deviation at the disc
tinous perturbation, and a corresponding jump in the fit
parabolas.

A delicate point, emphasized by the theory, regards
symmetry between the profiles in the fast-slow-fast and
slow-fast-slow configurations. In principle, the two config
rations should be symmetric to translations by half a ‘‘wav
length,’’ i.e., by one stripe. Conceptually, this is implied b
the periodic boundary conditions assumed in the theory,
is experimentally equivalent to an infinite number of stripe
This is most closely approached in the1

4 , 1
2

1
4 configuration,

and is supported by the flattening of the interface near
paper-air boundary.

Furthermore, the theory predicts that for small contr
the profile in the fast and in the slow domains should
symmetric under an up-down inversion with respect to
flow direction. This symmetry should be lifted by a rise
the contrast. This can be checked by comparing a slow-f
slow profile with an inverted profile of the fast-slow-fa
stripe formation as a function ofdk. In Fig. 10 we vary the
discontinous perturbation strength fromdk50.1 to dk
50.99. We obtain symmetric fronts for small defect streng
(dk,0.15), which is gradually lost as the defect strength
raised abovedk50.5. The discontinuity of the derivative
described in the paragraph above exists only for defects w
asymmetric profiles.

We can useH1 to get u1,2 @Eq. ~2.27!#. Knowing the
derivatives at the edges of the parabola and its width, we
obtain the parametersE1,2 and also the heightsdh1,2. This
prediction is given in the inset of Fig. 11. This presents
stringent test of the agreement between experiment
theory, since there are no adjustable parameters for the fi
the main part of Fig. 11 we show the remarkable agreem
~taking the experimental difficulties into account! between
experiment and prediction. The data are normalized by
size of the systemL. The experimental regime is right at th
point of transition predicted by theory (dk'1), and shows
the separation of the two lengthsdh1 anddh2 , but does not
reach into the change of slope predicted fordh2 . The points
in the figure are derived only from the central portion
curves in Fig. 10~‘‘fast’’ from slow-fast-slow and ‘‘slow’’
from fast-slow-fast!. This selection minimizes the effect o
the water-air interface on the paper boundaries.

The existence of a characteristic lengthH1 from the front,
above which side flow occurs and below which the flow
uniformly forward, is an essential tenet of the theory.
check its existence we turned again to ink tracers, plac
them this time both in front and behind the front. Figure
depicts the transition to side flow as a function of distan
from the front. The dye was placed when the front was at
second spot from the left. We then let the front propag
until close to the next ink spot. Looking behind the front, w
clearly see a point at which there is no longer any side flo
H̄1 is very hard to determine precisely with this experimen
technique, but we estimate it asH̄1'0.44 ~about 7 cm di-
vided by the width of the paper 16 cm!. The theoretical value
@given by Eq.~2.25!# H̄150.760.05.

V. CONCLUSIONS

In summary, we have presented a detailed study, exp
mental and theoretical, of a nonequilibrium flow system w
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a propagating front, where a defect is introduced in a sim
and tractable way. The theory for such flow in porous me
gives predictions for profiles and velocities at different def
structures and strength. On the other hand we have an
perimental system in which profiles can be controlled a
precisely measured.

The first essential ingredient allowing theory and expe
ments to interact is the existence of steady state solution
change in the capillary forces~not porosity! can generate a
completely different scaling solution for this problem. Th
comparison of theory to experiment indicates that there is
change in the capillary pressures, but we have no indep
dent verification of this. The other essential ingredients
that the system is dimensionless, basically becauseh;L and
that all results depend only on the contrastdk5(k2
2k1)/k1 . Problems of roughness and noise are avoided
having the strong perturbation of a defect, by averaging
by discussing only the steady state solution.

FIG. 10. The average profiles fordk50.1 ~bottom!, dk50.17,
dk50.51, anddk50.99 ~top!. The graph was created by invertin
the fast-slow-fast profiles and substituting zero for the left sys
boundary. The fast-slow-fast configuration is lower than the slo
fast-slow fordk50.51 and 0.99. Fordk50.1 the defects are wea
and large-scale fluctuations prevail@11#. For dk50.17 the two
curves coincide. The asymmetry starts to develop fordk50.51. It
grows further fordk50.99.
le
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We end up with an excellent correspondence of exp
ment and theory, and must emphasize that there areno free
fit parameters. In this way we obtained quantitative resul
for the propagation rate of the front, profile shapes a
heights, the depth of the perturbed flow field and the tran
tion to asymmetric profiles with the change of contrast.

An interesting conclusion from our work is that a loc
effect ~defect! will have a nonlocal effect on the scale of th
full system size. This is related to side flow whose existen
is verified experimentally. A second remark is that the s
tem ends up with profiles that are extremely basic: sim
quadratic functions. Finally, we note the outstanding res
apparent in the perturbation theory and corroborated by
experiment, that the asymmetry between the slow and
profiles of the steady state solution is a tendency which
velops with the contrast.

The theory further predicts a transition in the scaling
profile heights from low contrasts to high contrasts occurr
at dk;1. The range of contrast available to us in the expe
ment was only fordk<1 so we could observe the beginnin
of the transition to a different scaling but we cannot obse

-

FIG. 11. The experimental and theoretical values fordh1 and
dh2 ~see text for details!. The inset shows a log-log plot of the fu
predicted behavior. The experimental points were measured f
the data presented in Fig. 10~for both fast-slow-fast and slow-fast
slow configurations!. They depict the crossover region, marked
the rectangle in the inset.

FIG. 12. A picture of a1
2 , 1

2 experiment in which a longitudina
array of ink drops was placed after 50 min of run~when the inter-
section of the front and the centerline of the paper was at the se
ink drop from the left!. The final position of the front is marked a
the leftmost ink drop. The figure shows the transition to side flow
a function ofh. Side flow only occurs up to a certain lengthH̄1 .
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698 PRE 58O. ZIK, T. KUSTANOVICH, E. MOSES, AND Z. OLAMI
the second scaling regime. This would be a very interes
future objective.

Theoretically, the obvious extension of this system is
vary the capillary pressuresP1 andP2 to generate a scaling
solution for the profile. This presents an interesting exp
mental challenge. Other extensions include random array
defects and the interaction between them, and introductio
fluctuations in capillary forces which will hopefully lead t
complex yet tractable propagating front solutions.
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APPENDIX: CALCULATION OF THE SHAPE
OF THE PROPAGATING FRONT

USING PERTURBATION THEORY

Consider a front with a small perturbation inh(x) and a
small variation ink(x). The dynamics of the propagatin
front is given by Darcy’s law:

ḣ~x,t !52k~x!Py~h!, ~A1!

where we assumeA11(dh/dx)2;1, and ḣ is the front’s
propagation rate. We wish to find the SSS front propaga
rate and shape in this case. We remind the reader
ḣ(x,t)5const in this case.

To do this we expandP(h) and h near anh0 @which is
some largeH(t) in Eq. ~2.7!# in powers of a small paramete
l:

h5h01lh̄11l2h̄2

1¯H P~h!5f0~h!1lf1~h!1l2f2~h!1¯

f i~h!5f i~h0!1f i ,y~h0!~lh̄11l2h̄2!

1
1

2
f i ,yy~h0!~lh̄11l2h̄2!1¯ .

~A2!

We also expandk(x):

k~x!5k̄1lk~x!, ~A3!

where k̄ is defined in Eq.~2.14! and k(x) is a normalized
function that describes the geometry of the media. Inser
of these terms into the equations for the dynamics~2.2! gives
up to l2:

¹2f050, ~A4!

¹W k~x!•¹W f01¹2f150⇒¹2f150, ~A5!

¹2f21¹W k~x!•¹W f150⇒¹2f252k,xf1,x , ~A6!
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where we used the fact that¹W k(x) is orthogonal to¹f0 .
The last equation already tells us that the perturbation the
is going to be problematic in the discontinuous perturbat
case, sincekx is singular.

The boundary condition~BC! P(h)5P0 becomes~to or-
der l2!

f0~h0!5P0 ,

f0,y~h0!h̄11f1~h0!50,

f0,y~h0!h̄21f1,y~h0!h̄11f2~h0!50. ~A7!

Insertion of the previous equations inḣ5const. gives~again
to orderl2!

ḣ052k̄f0,y~h0!,

hG i52k̄@f1,y~h0!1k~x!f0,y~h0!#5const.

hG 252k̄@f2,y~h0!1f1,yy~h0!h̄12f1,x~h0!h̄1,x

1k~x!f1,y~h0!#5const. ~A8!

We finally obtain the obvious results forf0 :

H¹2f050
f0~h0!5P0 ~BC!

⇒H f05
P0

h0
y

ḣ052
K̄f0

h0

getting again the average velocityVs given in Eq.~2.14!.
To solve the differential equations forh̄1 and h̄2 we con-

sider the Fourier expansion ofh̄1(x), k(x), andf1 ~in nor-
malized units!

h̄1~x!5 (
m51

`

hmcos~pmx!, ~A9!

k~x!5 (
m51

`

kmcos~pmx!, ~A10!

f1~x,y!5 (
n51

`

Ansinh~npy!cos~pnx!. ~A11!

Equation~5.7! connectsAn and h̄1 ,

An52
P0h̄1

n

h0sinh~nph0!
. ~A12!

Using Eq.~5.8! and the fact that tanh(x) is one for largex,
we get:

h̄1
n5

kn

pn
, ~A13!

An5
P0kn

h0pn sinh~nph0!
. ~A14!
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The calculation forh̄2 is more complicated. One uses Eq
~5.6! and ~5.7! to derive expressions forf2 and h̄2 . After
some calculation we get

h̄2
n5Bn1

Cn1Dn

2pn
, ~A15!

where the coefficients are given by

Bn5(
l 51

`
~kn2 l1kn1 l !kl

2p l
, ~A16!

Cn5(
l 51

`
n2 l

l
kn2 lkl1

n1 l

l
kn1 lkl , ~A17!

Dn52(
l 51

`

kn2 lkl . ~A18!

~A19!

For the case of the defect the natural choice fork(x) is
given by:

k~x!5H b sgn~k12k2!,
~12b!sgn~k22k1!,
b sgn~k12k2!,

0,x,L~12b!/2
L~12b!/2,x,L~11b!/2
L~11b!/2,x,L.
,

ys

s

. A

ch
. Expandingk(x), f1(x,y), and h̄1(x) in Fourier series and
inserting in Eq.~5.13!, we obtain

f1~x,y!5
P0

p2h0
(

m51

`
~21!msin~bmp!

m2

sinh~2mpy!

sinh~2mph0!

3cos~2mpx! ~A20!

h̄1~x,b!5
1

p2 (
m51

`
~21!m11

m2 sin~bmp!cos~2mpx!.

~A21!

Though the solutionh̄1 is regular, it is interesting to note
that the angle at the defects is alwaysp/2. While this result
is in accord with the cosine relation, it is not in accord wi
our initial assumption in the perturbation theory, that tanu(x)
is small all along the front, Eq.~5.1!.

When we try to calculate the second order term we
into more trouble. The gradients ofk(x) are not continuous,
and therefore the corrections near the transition point will
discontinuous and not in accord with Eq.~5.20!.
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